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NON-LOCAL CRITERIA FOR THE EXISTENCE AND STABILITY OF PERIODIC 
OSCILLATIONS IN AUTONOMOUS HAMILTONIAN SYSTEMS* 

A.A. ZEVIN 

The conditions under which single-parameter families of periodic solutions 
(the existence in a sufficiently small neighbourhood of the origin of 
coordinates follows from the Lyapunov theorem (see /l/j) can be continued 
in a parameter to the boundary of the given domain, in particular to a 
certain isoenergetic surface, are found. These conditions, which can be 
verified by the use of the Hessian of a Hamilton function, also ensure 
the orbital stability of solutions to a first approximation. Bilateral 
estimates of the oscillation periods are obtained, and it is established 
that any solution with a period which satisfies such an estimate belongs 
to the corresponding family. As an example, the non-linear oscillations 
of a string with lumped masses are examined. 

The well-known non-local results relevant to the periodic oscillations 
of autonomous Hamiltonian systems are, as a rule, theorems on the existence 
of periodic solutions (see reviews /2--4/j. One group of papers establishes 
the existence of periodic solutions with a specified value of the Hamiltonian, 
and other papers, establish solutions with a specified period; in the 
first case assumptions and made regarding the form of the corresponding 
constant energy surface; and in the second assumptions are made regarding 
the behaviour of the Hamiltonian in the vicinity of the equilibrium 
configuration and at infinity. The majority of the results were obtained 
by-variational methods, the desired periodic solutions being identified 
with the stationary points of certain functionals. The discussion in the 
present paper is based on other concepts. 

1. Consider the system. 

. dH . 
X‘ =- 

aH 

%+n ’ xi+n = - % * L=l,...,n 

where xl,...,x,, and x,,+l,...,~l,, are the generalized coordinates and momenta,and H(xl, . . . . x2,,) 
is the Hamiltonian function, doubly differentiable with respect to x1. 

Let x0 (t) = (2: (t),. ..,h’(t))’ be a periodic solution of system (1.1) with period To (here 
the prime denotes transposition). The corresponding variational equation is 

JY' = 40 0)Y (1.2) 

where I,, denotes the unit matrix of order n. 
We will recall some well-known facts. System (1.1) admits of the integral 

H (51 0), * * .I X% (t)) = const, 
*Prikl.Matem.I4ekhan.,50,1,64-72,1986 

(1.3) 
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Let Y(t) be a matrizant, and pi(i= 1, . . . . 2s) the multiplicators of Eq.(1.2), i.e. the 
eigenvalues of the monodromy matrix Y(To). Because system (1.1) is autonomous, Eq.cl.2) has 
a periodic solution y"(t) =x"'(t), the multiplicator p = 1 corresponds to this solution. Since 
(1.2) is canonical, the multiplicity of this multiplicator is k> 2 (incidentally, this 
deduction also holds for an autonomous system of general form, which has a first integral). 
The case of k = 2 is 'typical' while that of k>2 is realized for some values of H. 

The vector-function z"(t) = (i?H/aXr, . . . . i31f/a&~Ix=4(t) is a periodic solution (see 
the adjoint equation 

2' = -(PA. (t))’ s 

Differentiation of (1.3) with x =x"(t) yields the identity 

(so (G, Y0 0)) = o* 
As a rule,the closed trajectories of the autonomous Hamiltonian systems are not 

/l/j of 

(1.4) 

(1.5) 

isolated: 
they form single-parameter families. The following auxiliary theorem gives sufficient 
conditions for the solution x"(t) to be a member of such a family. 

Theorem 1. If one Jordan block matrix or its multiplicity k = 2 corresponds to the 
multiplicator p = 1, then for sufficiently small 1s 1 system (1.1) has a unique single-parameter 
family of solutions x(t, s) such that x(t, 0)=x”(t). 

Proof. Let s~(t,ar,..., a,,,) be a solution of system (1.1) which satisfies the initial 
conditions zi (0, aI, ._., as,,) = ai (i = 1, . . ..2n). If, for certain al,...,% and T the equations 

51 (T, a,, . . ., ati) = at, i = 1, . . ., 2n (1.6) 
hold, then the corresponding solution zf(t,ar, . . . . a&is periodic with period T. 

Since system (1.1) is autonomous, one of the quantities can be regarded as known. To be 
specific, we take a,, = C, choosing C such that 

!&&O (0) f 0, QK (0) # 0 (1.7) 

Since x0 (t) = X0 (t + To), when T = To, at = r*‘(O), ah = C Eqs.cl.6) hold. If for some 
al and T sufficiently close to x1' (0) and T,, then 2n - 1 equalities (1.6) are satisfied, and 
by virtue of (1.3) and the second condition (1.7), we have r~,,(T,a~, . . ..az.l,C)= C, that is 
the last equation in (1.6) is also satisfied. 

As we know, 2n--1 Eqs.cl.6) determine, for sufficiently small Is) , a unique single- 
parameter family T (~),a~ (s), . . ,,aZn_l (s), which for s= 0 becomes To, xl" (0), . . . . ~+,-1 (0) if the 
rank of the corresponding Jacobian matrix, 

dzl ax1 1 

dl da - . f . aOLen_l 1 

B= i i 

a4n-l a=,,_, 
at aa, . ..aa i=xio(0), T=T. 

equals 2n - 1. 
First we assume that the Jordanian block matrix corresponds to the multiplicator p = 1 

i.e. Eq.tl.2) has a unique To-periodic solution y"(t) (accurate to within a multiplier). We 
shall show that in this casethematrix B1 obtained from B by crossing out the first column, 
is not singular and, therefore, the rank B,= 2n - 1. 

Let us assume that d&B, = 0;then the equation Bly = 0 has the non-trivial solution 
(yl,. . ., yBnFl)‘. As we know, 

and therefore matrix B1 can be expressed in the form B1 = Y,_l,z,, (To)- ZztrlF where Y,,r,z,r (To) 
is the matrix obtained from Y(T,) by crossing out the last column and the last row. Con- 

sequently, for yr&,. . ., yznel, 0)’ the first 2n-1 components of the vector Y (To)y’ are yl,. .., 

Ya-1. Let y'(t) be a solution of Eq.(1.2), which satisfies the condition y'(O) = y< that is 
y'(t) = Y (t)y'. Obviously, the solution z"(t) of the conjugate system (1.4) and any solution 
y (t) of system (1.2) also satisfy the relation 

(z" (t), y (t)) = const (1.8) 

Taking into account the fact that z"(O) = z" (To), yi’ (0) = yil (To) (i = 1,. . ., 2n - 1), zano (0)~ 0, 
and using the above relation we find that y,l(T,) = ~~~(0) = 0. Therefore y' (To) = y’(0) which 
means that y'(t) is a periodic solution of Eq.cl.2). Since yenl(0) = 0, yano (O)# 0, the solutions 

Y' (t) and y"(t) are linearly independent, which contradicts the assumption on the uniqueness 
of the periodic solution of (1.2). Consequently, detB,+O and the rank B = 2n - 1: this 
proves the first assertion of the theorem. 

Let us now assume that the multiplicity of the unit multiplicatoris k = 2, and the simple 
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elementary divisors correspond to this multiplicator (otherwise we should have the same caseas 
above). Suppose rank B< 2n - 1, then det B1 = 0; we shall show that rank Bl = 2n - 2. In fact, 

for rankBr< 2n - 2, the equation BJ =O has no less than two linearly independent solutions. 
As can be seen from the argument above, to these solutions there correspond the periodic 
solutions of (1.2),linearly independent with y'(t),provided the total number of the periodic 
solutions is two. Therefore, the matrix &obtained from B, by crossing out a certain row 
and column (to be specific, the column should be the last), is non-singular. 

Since rank B<2n - 1, the determinant of matrix B, obtained by crossing out the last 
column is zero. Consequently, the equation Ba = 0 has the non-trivial solution a = (co, c)', 
where c - (cl,. . ., c,,). Here cO# 0, otherwise the solution of the equation B,y =0 would have 
a non-trivial solution y = c', which is impossible because detB,#O. 

The identity B$ = 0 can be expressed as 

cOyTo + yW+l,I~-Ze'=(c, Oy, yT’=(~l((TO), . . . . &I-l(TO)Y (W 

where Yb_l,an_a is the matrix obtained from Y(T,) by crossing out the last row and the last 
two columns. 

Let us assume that 

y*=cof(To) + Y(To)Y’, yl=(c9 09 01 (1.10) 

As follows from (l.g), yia =yi'(i = I,..., 2n- 1). By virtue of (1.8) , (2' (O),y') = (z" (To), 
Y(T,)y'), and therefore from (1.10) and (1.5) we obtain 

W(O)> yl)= (r"(To), Yl- CoY"(To)) =(z"(To). y8) 

Since yis = 

Y* = Y', 
that is Yf'(i = 1, . . ., 2n - 1), z0 (To) = z0 (0), zpn” # 0, we have yms = y*nl = 0. Thus 

Y' = Y (To)Y' + coy0 (To), co # 0 (1.11) 

In view of the equation y"(T,) = Y(T,Jy"(To), this relation shows that the vectors y"(To) 
and yl belong to a cyclic subspace of the matrix Y(To)which corresponds to the eigenvalue 
p = 1. However, this is impossible since, by the above assumption, the corresponding elementary 
divisors are simple. 

Therefore, the assumption that rank B<2n - 1 leads to a contradiction. Thus, rank 
B=2n-1, and this ensures the existence and uniqueness of a single-parameter family of the 
solutions a*(s), and T(s) of system (1.6), and therefore of the corresponding family rf 0, 4 
(51 (0, 4 = c1 (4) of periodic solutions of system (1.1). The theorem is proved. 

Setting ai = at(s) and T = T(s) in relations (1.61, and differentiating them withrespect 
to s, we obtain 

a.=Y(T)a,+x'(T)T, 41.12) 

If the To-periodic solution y"(t) is unique then T,(O)#O. In fact, for T,(O) = 0, by 
virtue of (1.12) and because of the conditions yld,,O (0)g 0, (a,), = C, = 0 , the solution y (t)= 
Y(t)a, is a T+Sriodicand linearly independent solution y'(t). If for k = 2 Eq.tl.2) hastwoperiodic 
solutions, then T,(O)= 0. In fact, for T, (0)# 0 thevectors a, and yo(To)by virtue of (1.12) forma 
cyclic subspace of the matrix Y(T,) which corresponds to the multiplicator p = i,and this is 
impossible in View Of the simplicity of the elementary divisors_ 

Let us show that for k = 2, the quantity H can be taken as the parameter .s. The vectors 
y" (0) and a, form a root subspace al,ag of the matrix Y(T,), corresponding to the eigenvalue 
p = 1. Let b, and b,be the corresponding root subspace of the matrix Y(Tij’. As we know (see 

/5/) , A=detll(a,, b,)II:,9=1 # 0. Since the monodromy matrix of Eq.(1.4), Z(To)=(Y(T,)‘)-’ and 

2 (To) and Z(To)-'have the same eigenvectors, we have Y (T#z”(O) =Z(T,J1zo(0)=z”(O), therefore we 
can take bl = z" (0). Taking into account (1.5), we find A= -(as, z"(O)) (y"(O), b,)# 0, hence 
(a,, z” (0)) = dH (x (0, s))lds# 0. Therefore the quantity H can serve as a parameter which determines 
the family of solutions in question. 

Note. In proving the theorem we have ignored the Hamiltonian form of system (1.1). 
Therefore the system is valid for autonomous systems of general form, which have integral (1.3) 
(in particular, for Lyapunov systems). we also note that any system r'=f(x,fi) containing 
the parameter f~ can be reduced to the form indicated by including f, in some of the variables. 

2. Before we discuss the basic findings, we shall comment on the stability of periodic 
solutions. In those non-linear systems which have a unique first integral, the non-simple 
elementary divisors correspond, as a rule, to the multiplicator p = I. For this reason, Eq. 
(1.2) has a solution of the form y'(t)+ e"(t) and, therefore, the solution x"(t) is Lyapunov- 
unstable. The necessary condition of the orbital stability of x"(t) is the boundedness of the 
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remaining solutions. This certainly occurs if all the multiplicators of (1.2) lie on the unit 
circle and, with the exception of a double multiplicator p = 1, are definite, i.e. there are 
no coinciding multiplicators of different kind among them. We shall describe the solution 

x0 (0 for which these conditions are satisfied as orbitally stable to a first approximation. 
We assume that x = 0 is the equilibrium position of system (l.l), and (K (0) = O), 

A (0) = & (0) is a fixed-sign matrix (without loss of generality, positive definite). By 
this condition the eigenvalues of the matrix J-IA (0) are imaginary (see /5/); we denote them 
by f t-O (k = 1, s _ -9 n; 0 < CII~< ai+,)* If oi/ol# m for a certain j (i = 1,...,n;j# i;m is an 
integer), then in accordance with theLyapunov theorem (see /l/) in a sufficiently small 
neighbourhood of the origin of coordinates there exists a unique single-parameter family of 
periodic solutions x'(t, s) with periodic T,(s), such that xf(t, s)+ 0, T,(s)+h/o~ when s-+0. 

Let P be a specified bounded domain, and x = 0 its inner point, system (1.1) not having 
other equilibrium positions in 9. Below we find the sufficient conditions for the family 
x'(t, S) to be continued, in a unique way, with respect to s, to the boundary a&'J of the 
domain a, i.e. xj(t, s)E n when SC (0, se), x(t,,s,)E 862 for certain &, and s,. We note that 
the algorithms for a numerical search for periodic solutions of a Hamiltonian system by the 
method of continuation with respect to a parameter were developed in /6, 7/ and other publica- 
tions. 

Let A_ and A+ by symmetrical positive definite constant matrices which satisfy the 
inequality 

A_<.4 (x)<A+ for x=62 (2.1) 
As usual, the latter means that (A-c, c)<(A (x)e,~)<(A,e,c) for any vector c# 0. 
We denote the eigenvalues of the matrices J-IA_ and J-‘A, by f iok- and * iok+ 

Theorem 2. If for a certain j, 

(2.2) 

then the family ~'(1, 6) 
8. The corresponding 

i, k = 1,. . ,, n; m = 1,2,. . .; k + j for i=j 

is, in a unique way, continuable in s to the boundary of the domain 
period T,(s) satisfies the inequality 

Tf<Tj(S)<TF; T{=s, Tj-=-?$ 
t j 

For any sE(O,s,l the solution .j (t, S) is orbitally stable to a first approximation. 

Proof. By (2.1) and (2.2) we have oi-< ot"< ol+, o,“# up/m, therefore for small s the 
family xj (t, S) indicated in the theorem exists. First we shall show that if xj (t, s) is 
continuable in s to a certain (O,s,] then the corresponding period T,(s) satisfies the 
inequality (2.3). 

Consider the selfconjugate boundary value problem 

JY’ = [A_ + h (R (1) - A_)1 y, y (0) = y (T) (2.4) 

where R(t) is a symmetrical positive definite matrix. 
We denote by f iok (h) the eigenvalues of the matrix J-‘iA_ f h(A+ -A_)]. When Ic grows 

from zero to unity, ok (h)increases monotonically from ok- to or+. For R = A+ the positive 
eigenvalues of problem (2.4) are the roots of the equations 2nmlT = ok (a) ((k = i, . . . . n; m = 
1, 2, . . .). By (2.21, o, (A)# m-1 [ok-, ok+] for IE (0, I), k # j; w,- > oj/2. Therefore, when 
R = A+, we have either T = Tf or T = T,-, andthe boundary value problem (2.4) has no 
eigenvalues on (0.1). Since A (xi (6 8)) < A+, and for an increase in R(t) the positive eigen- 
values decrease (see /S/j, then for R = A (x’ (t, s)), T = Tj 
Since y = x'(t, 8) satisfies Eq.tl.2)) for R(t) = A (xj(t, s)) 

or T = T,- the eigenvalues hi# 1. 
and T = T,(s) problem (2.4) has 

an eigenvalue h = 1. Thus, T, (s)# Tf, Tj (s) # Tj-, i.e. for se (O,sJ inequality (2.3) is 
not violated. 

For R = A+ the multiplicators of the first and second kind of Eq.(2.4) are r&‘(h)= 
exp(ftik (h) T) and r**(h) = exp(--S*(h) T) respectively; for he IO,11 they are on the arcs rr'= 
(rkl (0), rpl (1)) and rra = (rk* (0),rkP (1)) of the unit circle. BY virtue of (2.2) and (2.3) onlv the 
arcs rrl and I',' have common points, and therefore for hi IO, Ilthe multiplicatorsof adifferent 
kind r,‘(h) and r,‘(h! arenot identical,withtheexceptionof r,‘(h) and r*,(h). 

holds forthemultiplicators pP' (A), Ppg (A) of (2.4) when R =A (d (t* S)). 

Thesameargument 

In fact, when L increases the multiplicators p,'(l) and pp* (A) (pP1 (0) = Q,* (0). pn* (0) = rp* (0)) 
move along arcs rP' and rpp, anticlockwise and clockwise respectively (see /B/). Let us assume 
that for A<: they meet; then for a certain b,<l the multiplicator pP1.or pqa is at the 
point p = p., not on the arcs ril, rip (i = 1,. . ., n). Consequently, if R =A(d(t,$)), the self- 
conjugate boundary value problem for Eq.(2.4) with the boundary conditions y(Tj)= p,y(O) has 
the eigenvalues h,~(O,l). Because, as R increases the positive eigenvalues decrease, and at 
the same time h,#O by virtue of (2.3), for R =A+ this problem also has eigenvalues 
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AI, = (0, 1)~ i.e. one of the multiplicators rt'(&& ri*(&) equals p,. However, this is impossible 
because ril (b) E l'$ $(1L) E Ii* for I E IO, il. 

thus, the multiplicators pP1 and ppa@, q = I,..., n; p, q#j) of Eq.cl.2) which corresponds 
to the solution x) (t,s) lie on the unit circle and are definite. Consequently, the multi- 
pliCityOfthemUltipliCatOr Q = IeqUalS tW0, and by maorem 1 the solution x'(t,s) is locally 
continuable in 5. For this reason, when xj(t,s)~ n only that value of S=S, can be a limit 
value- for which x' (t, s)+C as s-+8+. By this condition, system (1.1) in the domain p has a 
unique equilibrium position x =O, and therefore c =O. Since only the numbers TP = 2nlw~ 
(i = 1,. . -, n), can serve as bifurcation points of the equilibrium position on the T axis, by 
(2.2) and (2.31, as s+s* we have T)(s)-+T,“, But then together with x,(t,s) there exists 
a single-parameter family x*(&s) = xf(t,s,-s) such that x*(&s)+ 0, T(s)-+2dco,” as s-+0. 
This contradicts the assertion of Lyapunov's theorem on the uniqueness of such a family, and 
it proves that x'(t,s) is continuable in s up to the boundary of the domain n. 

The above argument shows that the multiplicators of Eq.cl.2) are definite when x =x'(t,s), 
with the exception of pI1 = pls = 1. For this reason xj(t, s) is orbitally stable to a first 
approximation. The theorem is completely proved. 

3. Let us discuss the theorem in more detail. Suppose that for x~ 61 we have H(0) = 
0, H (x)< M.Then, provided that (2.21, any periodic solution x(t)= hl with period TE(T,+, 

TI-) belongs to the family xJ (t,s). 
In fact (see the proof of Theorem 2), provided that (2.2) the multiplicity of the multi- 

plicator p= 4 which corresponds to any solution x(t) with period T=(Z'j+, Tj-) equals two. 
In conformity with Theorem 1, x(t) belongs to a single-parameter family of periodic solutions, 
and the quantity H can be taken as a parameter. Continuing r(t,H) in H up to H=O (here, 
as can be seen from the proof of Theorem 2, the inequality (2.3) is maintained, and T(H)- Z'j' 
as If + 0), we can find by means of Lyapunov's theorem that for small H, the family x&H) is 
identical with the family xj(t,II) indicated in the theorem. Because of the uniqueness of 
the continuation, these families are identical for all H( M. 

The number of the indices je [I,..., n) for which condition (2.2) is satisfied, yields 
the lower estimate of the number of periodic solutions which lie on any isoenergetic surface 

H(x)=E,<M. 
If (2.2) is satisfied for all XE lP', then d (t,X) can be continued in H on (0, a). 

At the same time for any H the solution with period TE (T)+, Tt’) is unique and belongs to 
the family d(t, H). 

As shown in /9/, provided that 

05 [ok , o~+llm, k = I,.. ., la; m = 1,2,. . . (3.1) 

system (1.1) has a unique solution with period T = 2nlo. Since x (t)zO is such a solution, 
oscillations with period 2x10 are not possible (as a corollary, oscillations with period 
T Q 2nlo,+ are also impossible). Hence it follows in particular that under the condition 
(2.21, Tj(s) is the minimum period of the solutions x'(t,s) because, for 0 E p (ml, mj+) 
condition (3.1) holds (p> 1 is an integer). 

On the other hand, if 

mzp oi- + ok- O‘+ + Ok+ 
o,+ , oj- ’ 3 i,k=l,...,n; 

f 
(3.2) 

i=+j for k=j; m=l,2,... 

then any periodic solution x(t) with period T E p (T,+, T,-) has a minimum period T* = Tip, 
and therefore it belongs to the family xj(t, s). 

In fact, (see the proof of Theorem 21, under the condition (3.2) the multiplicity of 
the multiplicator p= 1 of (1.2) is 2; therefore any solution x(t) is continuable in H up 
to H = 0, and at the same time the corresponding period T(H)=p(Tj+, Tj-). But, by virtue of 
(3.21, Oi" s IOj-, Oj+l for i#i, and consequently T(H)+ZnpIoj". and Tm,,(fI)-2n/ojo as E-0, that 
is x(t) belongs to the family i(t.8). 

We assume that a(x an even function with respect to the generalized momenta, i.e. 

H(Xl, . . . . .%l, Gz+1, . * *, Zan) = H (11, . . .I 2,. - 1,+1, . . ., -x*) (3.3) 
Then, together with the solution x (t) = (x1 (t),. . ., 5, (t))’ , the function x*(t) = (a (-t),. . ., 

% (-t)* -%I+1 (-t), . . -,- 2, (- t))’ also satisfies system (1.1). If the periodic solution x(t) 
is unique (to within a shift in t), then for a certain h the identity x*(t) = x(t + h) should 
hold; hence s1 (T) = s1 (-T), zl+,, (z) = -xi+,,(-r), where T = t--h/2. Consequently, provided that 
(2.2) and (2.31, and with an appropriate choice of the reference point, we have 

xii (t, s) = xi (- t, s), xi+, (t, S) = - x!+, (- t, s). i=l,...,n (3.4) 

Let US assume that R(x) is an even function of the coordinates and momenta 

H (x) = H (-x) (3.5) 
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In this case the theorem remains valid, if we replace (2.2) by the weaker condition, 

tin 
[ 

a,- + ok- ai+ + @; 
aj+ , “_ 1, i, k=l,... ,n; i#i (3.6) , 

for k=j; m=l,2,... 

By this condition, Oj'*lBp lm, and therefore in a sufficiently small neighbourhood of the 
origin, xj(t,#) exists. Provided that (3.5), the function -xj(t,~) also satisfies system (1.1); 
hence, taking into account the uniqueness of &@,I) we find that for a certain h, xj(t+ h,+= 
- xj (t, I). Consequently, xj (t + 2h, 8) = xj (t, b), h = T/2 ; that is 

xj (t + T/2, a) = - xj (f, r) (3.7) 
It follows from (3.5) and (3.7) that A (x)=A (-x), Al(t) =A (x'(t,d))= A (xj(t+ T/2,8)), i.e. 

the smallest period of the matrix Aj(t) is T/2, and therefore the multiplicators of (1.2), 

P1 , equal the eigenvalues of the matrix Y(T/2). We find, in a way similar to the proof of 
Theorem 2, that under condition (3.6) all multiplicators lie on the unit circle and, with the 
exception of p= -1, they are all definite. Since the eigenvalues of the matrix Y(T) are 
pi'(Y (T) = Y (T/2)*) , the multiplicity of its unique eigenvalue is two , which in conformity with 
Theorem 1 ensures the uniqueness of continuing xj(r,a) in s in the domain Q. In turn, the 
latter guarantees relation (3.7). 

4. As an example, let us look into the oscillations of a string with limped masses. 
Assuming that there is no longitudinal shift of mass, we shall find the Hamiltonian function 

Ii =tj+l-~t (i '0, 1, . . ., n-l), zn=znr ro=O 

where .q,. ., zn are the transverse shifts of masses ml,..., m,; +,+I,.., z,, are the corresponding 
momenta; I,,. . ., l,, are the lengths of the successive segments; E is the elastic modulus, F 
is the cross-sectional area, and T, denotes the initial tension of the string. 

We reduce the Hessian of the Hamilton function to the form 

(k - 1) 1: 

T/(li’ + Ii’)’ 
(4.1) 

b, = ci+l - Ei (i=O, 1, . . . . R---l), b,=cn, co=0 

Clearly, when k>i, to obtain the .form (A+e,c),or (A_c,c) it is sufficient to set in 
(4.1) z,* = 0 or y* = yO* = mar y* when zi+l, +i E P (1 = 0, i,. . ., n); and for kc4 just the opposite. 
Let op and oi be the corresponding frequencies, then ol+ = OioI wi- = 01 for k>l, q- = oi”, o,+ = 

@i for k<i. The quantities @equal the frequencies of small natural oscillations, therefore 
for k>i the periods Tj(H) of the solutions >(t,H) are longer, and for k<i shorter, than 
the corresponding periods of small oscillations, Tj’; for k= i the system becomes linear. We 
note that physically k is the relative elongation of the string due to the tension T,. 

Since H(X) = H tTx). due to condition (3.6), in the domain P there exists the family of 
periodic solutions x'(t,H) as xj(t,H)+O and Tj(H)- 2rr/oi" as H -0. This family is orbitally 
stable to a first approximation, and satisfies relations (3.4) and (3.7). 

When the domain 6l increases, the corresponding frequencies oi(P) then to I&' and for this 
reason the number of indices j for which the condition (3.6) holds, increases. 

If P=RM, assuming in (3.1) that ri+ 00. we find that Oi = op/l/-. Let us denote by 
kj- and kj’ the limit values of k for which the condition (3.6) is violated (thus, for kj-< 
k < kj’ the solution xj(t,H) is continuable to any H). Clearly, kj’ equals the following number 
nearest to unity from the right; and k,-, that from the left: 

( 

e*"+ Ok0 
T Or > ( 

2opm 
op > 

t, k= 1,. . ., n; i#j for k=i; m = i,2,. . . 

Therefore, kj- = i/kj+. The relation b-= (o,,_~"+o,,~)'(~o,~)". is computed directly. 
For example, let n = 4, 4 = I,, q = m (i = 1, . . ., 4), 2T,%(Z,m)-'7* = 1. Then oiO = sin ki* ki = nil2 (n i- 

t), hence o,' = 0.3090, o,'= 0.5878, on0 = 0.8090. 0," = 0.9512. Corresponding calculations yield k-= 0.963, 

kl+ = 1.039. k; = 0.709, k,+ = 1.411, k; = 0.846, k,+ = 1.183, k4- = 0.857, k,+ = 1.167. 
Notice that in the case of a finite domain 51 the solution xj(t.H) is certainly Continuable 

to the boundary of Q if the frequencies oi (Q)> &/r/v for k)l or q(Q)< &‘/fi for 

k < i (i = 4, . . ., n). 
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STABILITY OF THE UNIFORM ROTATION OF A GYROSTAT ROUND THE VERTICAL 
MAIN AXIS ON AN ABSOLUTELY SMOOTH HORIZONTAL PLANE* 

S.A. BELIKOV 

The motion of a gyrostat on an absolutely smooth plane is discussed. A 
Hamilton function which gives the canonical equations of motion is 
obtained. This admits of particular solutions, namely uniform rotations 
round a vertical axis which are identical with that of the uniform rotations 
of the rotor. A transition to a system with two degrees of freedom is 
realized, and the expansion of the Hamiltonian in the vicinity of the 
corresponding position of equilibrium, with an accuracy to within fourth- 
order terms, is obtained. In the region of admissible values of the 
parameters the domain of the necessary stability conditions, and the 
domains where the Hamiltonian functions are of fixed sign and alternating, 
are examined. In those cases where the Hamiltonian is not fixed sign, 
its normalization is performed, both a non-resonance situation and 
resonances of the first, second and fourth order being considered. The 
sufficient conditions for stability of uniform gyrostat rotation in terms 
of constraints on the coefficients of normal forms are obtained. For a 
clear interpretation of the results, special cases where the values of 
all the parameters except two are fixed, are given. The plane domain of 
the necessary stability conditions and resonance curves are constructed, 
and using computer results stability on the curves is discussed. 

The stability of uniform rotations of a heavy solid around the 
vertical principal and minor axes on an absolutely smooth, and on an 
absolutely rough horizontal plane , and also on a plane with viscous 
frictionis discussed in /l-4/. The stability of uniform rotations of 
a gyrostat round the vertical principal axis on absolutely smooth and 
absolutely rough horizontal planes was considered in /5, 6/. Investigations 
of the motion of a solid on an absolutely rough plane, the body being 
perturbed with respect to rotation round the principal axis (in particular 
with respect to the steady position of equilibrium), are described in 

*Prikl.I4atem.I4ekhan.,50,1,73-82,1986 


